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Abstract
Culex pipiensmosquito is a species widely spread across Europe and represents a compe-

tent vector for many arboviruses such as West Nile virus (WNV), which has been recently

circulating in many European countries, causing hundreds of human cases. In order to iden-

tify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in

Piedmont region (Northwestern Italy) among different seasons, we developed a density-

dependent stochastic model that takes explicitly into account the role played by tempera-

ture, which affects both developmental and mortality rates of different life stages. The model

was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of

recorded capture data gathered in the study area from 2000 to 2011; in this way, we disen-

tangled the role played by different seasonal eco-climatic factors in shaping the vector

abundance. Illustrative simulations have been performed to forecast likely changes if tem-

perature or density–dependent inputs would change. Our analysis suggests that inter-sea-

sonal differences in the mosquito dynamics are largely driven by different temporal patterns

of temperature and seasonal-specific larval carrying capacities. Specifically, high tempera-

tures during early spring hasten the onset of the breeding season and increase population

abundance in that period, while, high temperatures during the summer can decrease popu-

lation size by increasing adult mortality. Higher densities of adult mosquitoes are associated

with higher larval carrying capacities, which are positively correlated with spring precipita-

tions. Finally, an increase in larval carrying capacity is expected to proportionally increase

adult mosquito abundance.
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Introduction
Zoonotic pathogens are believed to cause about three quarters of human emerging infectious
diseases, many of which (22%) are spread by vectors such as mosquitoes [1]. One of the most
recent emerging mosquito-borne diseases in the Western Hemisphere is West Nile Virus
(WNV), a flavivirus first isolated in Uganda in 1937 [2]. It is maintained in a bird-mosquito
transmission cycle primarily involving Culex species mosquitoes of which the Cx. pipiens com-
plex is thought to be one of the most important in Europe [3]. In recent years, WNV has been
circulating in many European countries, including Italy, causing hundreds of human cases [4].
Cx. pipiens is also involved in the transmission of other human and animal pathogens such as
Usutu virus [5], whose first case outside Africa was recorded in Italy in 2009 [6], St. Louis
encephalitis [7], which caused about a hundred human cases in the US during the last decade
[8], Rift Valley fever [9], Sindbis virus [10], avian malaria and filarial worms [11].

The transmission of mosquito-borne diseases is largely driven by the abundance of the vec-
tor [12, 13]. Thus, rigorous surveillance of mosquito density and control programs based on its
reduction represent key components of disease containment and prevention. Therefore, in
order to design appropriate control strategies it is crucial to understand the population dynam-
ics of existing vector populations and evaluate how it depends on environmental factors.

In the Piedmont region of Northwestern Italy, an extensive program of monitoring adult
mosquitoes has been implemented, since 1997, by the Municipality of Casale Monferrato and
the Istituto per le Piante da Legno e l’Ambiente (IPLA). The area is at risk for WNV, because of
the presence of suitable vector and reservoir host populations, and the increasing numbers of
human cases of WNV in adjacent areas [14, 15]. Previous studies [16, 17] analyzed spatio-tem-
poral variations of mosquito species collected in the area, detecting a very high heterogeneity in
the temporal pattern of mosquito population dynamics both inter- and intra-annually. In par-
ticular, looking at Cx. pipiens population dynamics from 2001 to 2011, Rosà and co-authors
[17], detected a huge variation in total yearly mosquito abundance among different traps, rang-
ing from 40 to more than 4000 individuals captured per year. Also the timing of mosquito sea-
sonal dynamics varied significantly among traps and years. Specifically, for around 90% of the
observations the start of mosquito season varied from the beginning of June to mid-July, while
the length of mosquito season varied from 45 to 90 days [17].

The main goal of our work is to describe and interpret in a robust theoretical framework the
high heterogeneity observed among different seasons for Cx. pipiens population dynamics in
Northwestern Italy [17], by explicitly taking into account some important eco-climatic and
biological factors.

In their work, Rosà and co-authors [17] found that precipitation and temperatures during
the early period of the year (spring and early summer) might remarkably influence Cx. pipiens
population dynamics. In particular, warm temperatures early in the year were associated with
an earlier start of the mosquito season and increased season length, while early precipitation
delayed the start, and shortened the length of the mosquito season, but increased total abun-
dance [17]. Indeed, temperature is well known to affect several aspects of Cx. pipiens life cycle
including development and survival rates [18, 19].

Density-dependence in mosquito population growth is another important factor in regulating
Cx. pipiens population dynamics [20]. In fact, it has been found that inclusion of density-depen-
dence, in combination with key environmental factors, significantly improves model prediction
of Cx. pipiens population expansion in Northern Italy [20]. By using a statistical model, the
authors found that the most significant environmental drivers of Cx. pipiens population dynam-
ics were the daylight duration and temperature conditions in the 15 day period prior to sampling
while precipitation and humidity had only a minor influence on Cx. pipiens growth rates.
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Diapause is a common mechanism adopted by mosquitoes to survive through winter. While
other mosquitoes, for instance Aedes albopictus, overwinter through diapausing eggs [21], in
the case of Cx. pipiens, only adult females undergo diapause halting blood feeding and therefore
host-seeking behavior [21]. More specifically, immature stages develop into diapausing adults
according to the photoperiod they are exposed to [22].

We therefore develop a density-dependent stochastic model that describes temporal varia-
tions of Cx. pipiens population dynamics including the effect of temperature and daylight dura-
tion on the abundance of both adults and immature stages of Cx. pipiens. Mechanistic models
include, with more or less details, the biological processes driving mosquito population dynam-
ics and provide a suitable framework to investigate the main determinants of dynamical pat-
terns beyond the observed conditions [23]. Several mechanistic models have been proposed to
explore mosquito population dynamics especially for Anopheles species (e.g. [24–27]) and
Aedes albopictus (e.g. [28–30]) while, to the best of our knowledge, fewer attempts have been
carried out for modelling Cx. species population dynamics [31–34]. Mathematical models rep-
resent a powerful tool to investigate the role played by different climatic factors on vector pop-
ulation dynamics and to evaluate the effectiveness of alternative mosquito control strategies, as
suggested by recent works on Cx. quinquefasciatus [33], Anopheles species [27] and Aedes albo-
pictus [30].

We follow a stochastic approach as deterministic models ignore the contribution of demo-
graphic stochasticity which is especially relevant when the vector population is low, for
instance at the beginning and at the end of mosquito activity season. The proposed model
explicitly accounts for the temporal variation of all immature stages, i.e. eggs, four larval instars
and the pupal stage; it is assumed that the lengths of all mosquito life stages depend on temper-
ature and that developmental rates of larval stages are density-dependent; finally, a diapausing
mechanism is included in response to the photoperiod.

The effect of precipitation on survival and development of mosquito life stages is not explic-
itly accounted for, as, to the best of our knowledge, no reliable data on Cx. pipiens are present
in literature for modeling and calibrating such mechanism. In the Results Section, we discuss
correlation of density dependence with precipitation, which could indirectly enter the model in
this way.

Finally, extensive model simulations have been carried out in order to better understand the
role played by different eco-climatic factors in shaping the seasonal specific vector dynamics
and to forecast, under various illustrative scenarios, likely changes in Cx. pipiens seasonal
dynamics if temperature or density–dependent inputs would change.

Methods

Data
Cx. pipiensmosquitoes were collected on public land using CO2 dry ice baited traps operated
by Municipality of Casale Monferrato and the Istituto per le Piante da Legno e l’Ambiente
(IPLA), under the regional program for mosquito surveillance, authorized by Regione Pie-
monte. The traps were dispersed over an area of 987 km2 in the Eastern Piedmont Region in
North West of Italy (see Figure G in S1 Text and [16, 17] for more details). The study region is
characterized by cold winters and warm summers (average temperature of 0.4°C and 24°C,
respectively), abundant precipitation (~600 mm/yr) and by a mostly agricultural landscape
(86%) with few urban settlements (3%). This makes the area a highly suitable habitat for Cx.
pipiens. Traps were set up one night every week, for a twenty-week period starting at the begin-
ning of May and ending in mid-September, for 12 consecutive years (2000–2011). Traps were
collected the following day and all catches counted, sexed and identified. Since some locations
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were not deployed every year [16, 17], we consider in this study only data coming from traps
sampled for all the 12 consecutive years (i.e., 24 out of 44). Trapping conditions including posi-
tioning, battery and trap type, and CO2 source (0.5 kg placed in traps each evening before a
capture session) were identical among different sites and years [17]. Moreover, during the
study period, no relevant activities were performed to control Cx. pipiens and no substantial
changes have been observed in the land use of the area and in the human population size. The
biotype present in the eastern Piedmont area has not been definitively identified. However,
given the relatively infrequent bites to humans in the considered area, a previous study has sug-
gested Cx. pipiens pipiens—which is predominantly bird-feeding—as the more likely biotype
[17]. It is possible that human exposure to mosquito bites may be lower in more agricultural
areas. However, a recent study conducted in a region of Northern Italy showed that Cx. pipiens
prefer to take blood meals from avian hosts both in rural and urban areas [35]. For a more
detailed description of the study area and the trapping conditions, see [16, 17]. Data used for
the proposed analysis are fully available in S1 Table.

Modelling mosquito dynamics
The model for the dynamics of the abundance of the vector in seven life stages of Cx. pipiens,
namely eggs (E), 4 larval instars (L1, L2, L3, L4), pupae (P) and non-diapausing female adults
(A), is based on the following system of equations:

M ¼

E0 j ¼ nE

dA
A� ðmE þ tEÞE

L0
1 j ¼ tEE � tL1 þ mL1

1þ L1 þ L2 þ L3 þ L4

K

� �� �
L1

L0
2 j ¼ tL1L1 � tL2 þ mL2

1þ L1 þ L2 þ L3 þ L4

K

� �� �
L2

L0
3 j ¼ tL2L2 � tL3 þ mL3

1þ L1 þ L2 þ L3 þ L4

K

� �� �
L3

L0
4 j ¼ tL3L3 � tL4 þ mL4

1þ L1 þ L2 þ L3 þ L4

K

� �� �
L4

P0 j ¼ tL4L4 � ðtP þ mPÞP

A0 j ¼ 1

2
tPð1� pÞP � bmAA� wCaA

C0 j ¼ wCaA

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where tE; tL1 ; tL2 ; tL3 ; tL4 ; tP are the temperature dependent developmental rates driving the

transitions of vectors across the different life stages considered; mE; mL1
; mL2

; mL3
; mL4

; mP; mA are

the temperature dependent death rates associated with the different stages; nE is the number of
eggs laid in one oviposition; dA is the length of the gonotrophic cycle; K is the density-depen-
dent scaling factor driving the carrying capacity for the larval stages; p is the probability
(depending on daylight duration) that a fully developed pupa becomes a diapausing adult; β
gauges the possible increase in adult mortality rate due to wild conditions with respect to lab
conditions; α is the capture rate; χC is a function of the time defined equal to 1 when the trap is
open and 0 otherwise; C represents the cumulative number of captured female adult mosqui-
toes. Since only female adult mosquitoes are explicitly considered in the model, the term 1/2 in
the equation for the adults accounts for the sex ratio [36]. Note, moreover, that diapausing
females do not take blood meals before overwintering [21] and they cannot be captured with
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the considered traps. For this reason, only non-diapausing female adults are considered in the
model.

Daily mean temperature and precipitation records for the period and study area considered
were obtained from ARPA Piedmont [37]. Daylight durations for the centroid of the study
region during the considered period were obtained from the US Naval Observatory [38].

We actually adopted a discrete–time stochastic version of modelM, with time–step Δt = 1
day, in order to account for the stochastic nature of the processes. Precisely, the model is a
Markov chain whose states represent the number (an integer) of individuals in all developmen-
tal stages, and whose transition probabilities are built according to binomial distributions
whose means are obtained from the rate in systemM. Details are specified in S1 Text. The sea-
sonal dynamics of the mosquito population is simulated for 12 years, from April 1 (corre-
sponding to approximately one month before the first capture session) to October 1. Since, to
the best of our knowledge, no data are available on the overwintering of Cx. pipiens, we simu-
late each year y separately by initializing the system with A0(y)> 0 non-diapausing adults.

Model calibration
Mortality and developmental rates across different vector life stages have been modeled as a
function of temperature following the approach already proposed in [29] on the basis of data
collected in [19, 39]. Specifically, we modeled the developmental period and the mortality rate
associated with different vector stages at each temperature by fitting a suitable set of functions
of the temperature T—comprising exponential and parabolic functions—to durations and
rates measured at different specific temperatures through laboratory experiments [19, 39]. For
the egg developmental rate, we used the same function proposed in [32]. The same technique
was used to estimate the probability p for a developed pupa to become a diapausing adult as a
function of daylight duration using the data presented in [22]. The uncertainty of parameters’
estimates was obtained by using a bootstrap procedure similar to that used in [29, 40]. More
details on the technique employed are presented in S1 Text.

To the best of our knowledge, data on adult mortality at different temperature are not avail-
able for Cx. pipiens. Therefore, the mortality rate of adult female mosquitoes has been taken as
the function of temperature suggested in [18], also allowing for an increase in adult mortality
rate in the wild relatively to lab conditions. The average number of laid eggs nE per oviposition
and the duration of the gonotrophic cycle dA in our simulations were chosen uniformly in the
intervals [150,240] and [2,8] days respectively, according to results presented in [41,42].

Free model parameters to be estimated are the capture rate α, the increase of adult death
rate in the wild β, the density-dependent factor K, and the number of initial adults A0. More
specifically, we assumed α and β to be equal among all years considered, while the value of K
and A0 could be year-specific.

Model predictions for the dynamics of mosquito population during a specific season depend
on the free parameters θ = (α, β, K, A0) but are also influenced by the intrinsic stochasticity of
simulations and by the uncertainty on parameters defining the transition rates used in the
model (e.g. the developmental and mortality rates for different mosquito life-stages). By denot-
ing the latter set as ω we define as λ{m,y}(θ, ω) the number of captures at monthm and year y
predicted by the model with parameters θ and ω.

In order to estimate the free parameters by taking into account both the stochasticity of the
process and the uncertainty on parameter estimates defined by ω, for each year y, we define the

expected number of captures at monthm associated with θ, denoted hereafter by ~l m;yf gðyÞ, as
the λ{m,y}(θ, ω) corresponding to the simulation producing the median cumulative number of
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yearly captures among the simulations obtained by employing the same parameter set θ and
varying ω.

The posterior distributions of the free parameters θ were explored by Markov chain Monte
Carlo (MCMC) sampling applied to the likelihood of observing the monthly number of
trapped adults, averaged among the 24 considered sites. Assuming that for each month the
number of observed trapped adult mosquitoes follows a Poisson distribution with mean
obtained from the model, the likelihood of the observed data over the twelve simulated years
has been defined as

L ¼
Y2011
y¼2000

Y5

m¼1

ef�
~lfm;ygðyÞ Þg

~lfm;ygðyÞ nfm;yg

nfm;yg!

where y runs over the different considered years,m runs over months, n{m,y} is the observed
average number of trapped adults over the 24 sites at monthm and year y as reported in [16,

17] and ~l m;yf gðyÞ is the predicted number of captures at monthm and year y simulated by the

model with parameters θ = (α, β, K(y), A0(y)).
The posterior distribution of θ was obtained by using random-walk Metropolis-Hastings

sampling approach [43] and normal jump distributions. A total of 100,000 iterations were
performed and a burn-in period of 5,000 steps was chosen. Convergence was checked by con-
sidering chains associated with different starting points in the parameter space and by visual
inspection on the trace plots of chains.

Model predictions associated with the estimated posterior distributions of model parame-
ters for the different seasons (from 2000 to 2011) were analyzed in terms of i) the weekly num-
ber of Cx. pipiens captured during the twenty-week survey period; ii) the total number of
captured mosquitoes at the end of each year; iii) the highest weekly capture during each year;
iv) the week at which the highest capture was observed; v) the start and the end of the mosquito
season, defined as in [17] to be the weeks by which respectively 5% and 95% of the cumulative
captures in the simulated season occurred; for clarity, from now on, we will denote these values
by onset and offset; vi) the season length, defined as the number of weeks between the onset
and the offset of the season [17]. The uncertainty surrounding model predictions is generated
by both the variability of the estimated posterior distribution of free model parameters and the
intrinsic stochasticity characterizing model simulation.

Finally, we applied the model to assess the influence of the temperature on the population
dynamics. To this aim, we simulated each year y with 10 different temperature patterns T(y,t)

ranging from Tðy; tÞ � 2:5� to Tðy; tÞ þ 2:5�, where Tðy; tÞ is the observed temporal pattern
of temperature associated with year y. Following a similar approach, we investigated the role
played by the larval carrying capacity by simulating each year y with different density-depen-

dent factors K, ranging from 0:5 � KðyÞ to 1:5 � KðyÞ, where KðyÞ is the estimated density-
dependent factor for year y.

Results and Discussion
The proposed model can well reproduce the number of weekly captures of adult mosquitoes
reported between May and September for all the twelve years of observation (2000–2011). In
particular, more than 90% of the weekly trap records lie within the 2.5–97.5% quantile of
model predictions. The model shows the ability of reproducing both the strong seasonality
characterizing the adult population dynamics within different years and the high heterogeneity
observed among different seasons in terms of mosquito density (see Fig 1).
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In agreement with collected data (see Fig 2c), our results show that the average cumulative
number of trapped adults can substantially change between seasons, ranging from 510 (2.5–
97.5% quantile predictions: 100–1887) in 2003 to 2425 (2.5–97.5% quantile predictions: 1194–
4677) in 2000.

The highest capture is predicted to occur, on average, between the 27th and 31st week of the
year (corresponding to the month of July) in good agreement with observed values (see Fig 2b).
On the opposite, the predictions on the maximum number of trapped adults in a single capture
session during the entire season are extremely variable among different simulations and do not
accurately reproduce observed values. This field measure is highly sensitive and reflects sto-
chastic variations driven by site-specific factors such as rain and wind condition of the day.
Indeed, strong wind and rainfalls might alter Cx. pipiens dispersal and host-seeking behavior,
possibly reducing the probability of being captured. In fact, data collected show that captures
of two consecutive trapping sessions can be remarkably different (with differences sometimes
of an order of magnitude). In order to smooth the inherent variability in captures, we com-
puted, for each trap, the 3-point moving average of weekly captures. The distribution of the
maxima of moving averages, for each year, is shown in Fig 2d; it can be seen that the variability
in model predictions is consistent (though a bit lower) with the observed variability among
traps. In addition, years characterized by higher maximum number of trapped adults within a
single capture are associated with higher peaks in model predictions.

The 2.5–97.5% quantile of the predicted offsets are between the 34th and 37th week (mid-
August—mid-September) in each year, like the observed captures (see Fig 2a). The predicted

Fig 1. Model fit. Average number of weekly capturedCx. pipiens during the twenty-week survey period observed in Piedmont region from 2000 to 2011 (blue
points) and predicted by model simulation based on the estimated posterior distribution of free parameters (median in red, pink region defines 2.5–97.5%
quantile predictions).

doi:10.1371/journal.pone.0154018.g001
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onsets are on the average between the 21st and the 23rd week (end of May–beginning of June), a
few weeks earlier than what observed (median values between 24th-27th week, June).

In [17] the authors found that the starting time of the mosquito season (onset) was nega-
tively correlated with the average temperature of weeks 8–19 (i.e., higher temperatures hasten
the onset), and found that season length was positively correlated with mean temperature of
weeks 16–27. Our analysis confirms such results suggesting that the median predicted onset,
which defines the starting time of the season, is negatively correlated (y = 27.81−0.52�x, p-
value<0.01) with the average temperature recorded between mid-February and the beginning
of May, which ranges from 9.6°C in 2004 to 13.4°C in 2007. This is in line with the observed
faster development of immature stages associated with higher temperatures.

Furthermore, the median predicted season length is positively correlated (y = −2.00 + 0.80�x,
p-value<0.01) with the average temperature recorded between mid-April and the end of June,
which varies from 18.5°C in 2004 to 21.5°C in 2003.

The model accounts for the observed heterogeneous dynamics of the mosquito population
among different seasons thanks to the explicit inclusion of two seasonal factors. The first one is
the dependence of developmental and mortality rates of different mosquito stages on tempera-
ture. The second one is represented by the assumption of a year specific density-dependent fac-
tor for larval stages, which may reflect possible differences in the availability of breeding sites
in different years.

Fig 2. Annual synthetic indexes. Boxplot (2.5%, 25%, 75% and 97.5% quantile and median) of predicted onset (lower orange bars in panel a) and offset
(higher orange bars in panel a), defined as the week of the year when the 5% and the 95% of the cumulative captures are reached respectively; week of the
year associated with peak (highest) capture (red bars in panel b); total annual captures, i.e. the sum of the 20 weekly captures (green bars in panel c); peak
capture, i.e. maximum number of trapped adults in a single capture session (purple bars in panel d). Blue boxplots represent the distributions of the observed
site-specific values. Distributions of the observed peak capture were obtained by computing the maximum of 3-point moving average of weekly captures.

doi:10.1371/journal.pone.0154018.g002
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The estimated posterior distribution of the initial number of adults (namely A0) spans a
wide range, between approximately 1 and 1,000 in each season (see Fig 3a), with negligible dif-
ferences among different years.

Conversely, estimated posterior distributions of the density-dependent factor are remark-
ably different among years (see Fig 3b). A recent study [17] carried out on the same dataset
considered in this work has shown that Cx. pipiens population size in different years is posi-
tively correlated with the number of days of precipitation in the first three months of the year.
Following the same approach presented in [17], we explored possible correlations between the
estimated density-dependent factors and the number of rainy days among different temporal
windows. We considered 22 temporal widows built by grouping periods of 12 consecutive
weeks, starting from the first week of the year (weeks 1–12) and ending with weeks 22–33. For
each window, number of days of precipitation was summed. We found that the median value
of the estimated density-dependent factor is positively correlated (y = -380.54+ 32.14�x, p-
value<0.01) with the number of rainy days in weeks 13–24 (end of March—mid-June), which
encompass partially the first half of the simulated period. Therefore, although the model does
not take precipitation explicitly into account, our analysis highlights its likely influence on
mosquito population dynamics. This positive correlation is biologically reasonable as more
rain can create more breeding sites and therefore increase the carrying capacity of larval stages,
which is proportional to the density-dependent factor.

The capture rate α is estimated to be on average 11.35% (10% median, see Fig 3c) in good
agreement with values published in [44], where it was estimated to be 10.8% through a field
experiment carried out using bird-baited traps placed outdoors in an open lawn area. However,
it is worth noting that this experiment was carried out in a setting different from our study

Fig 3. Estimated parameters. Boxplot (2.5%, 25%, 75% and 97.5% quantile and median) of posterior distributions of parameters A0 (panel a) and K (panel
b) estimated in different years. Histograms of relative frequencies for posterior distributions of parameters α (panel c) and β (panel d).

doi:10.1371/journal.pone.0154018.g003
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area, using different traps. Furthermore, the posterior distribution we obtained for α is very
wide, and thus does not give strong support to any specific estimate.

The estimated posterior distribution of β, the increase in adult mortality rate in the wild rel-
atively to lab conditions, is also very wide (95% CI 1.09,23.98, see Fig 3d) with an estimated
average of 4.61 (4.52 median). This result is in good agreement to what has been observed in
[45] for Aedes albopictus, for which adult survival is four times lower in the wild relatively to
the survival observed under laboratory conditions.

Undoubtedly, independent estimates on a subset of our free parameters would allow provid-
ing more robust estimates of these specific biological quantities. However, the MCMC approach
represents a suitable statistical technique to handle uncertainties about parameters, as it takes
into account all possible parameters’ configurations compliant with patterns observed in the
data. Simulations were run also by assuming seasonal dependent α and β. The two different
modeling assumptions result in qualitatively similar predictions about the abundance of the
mosquito among different years (see S1 Text). These results strongly suggest that the more par-
simonious model with seasonal independent α and β should be preferred as associated with a
lower value of the Deviance Information Criterion (DIC) [46].

Temperature plays a crucial role in shaping the population dynamics of Cx. pipiens. As
already suggested by the statistical correlations presented above, higher temperatures can both
hasten the occurrence of high adult densities (see Fig 4b) and lengthen the breeding season (see
Fig 4a). On the other hand, either too high or too low temperatures during the season might be
responsible of a noticeable decrease in peak mosquito abundance (see Fig 4c) as a consequence
of the balance between two opposite phenomena; high temperatures increase mosquito mortal-
ity rates (especially in adults) while low temperatures can strongly reduce the developmental

Fig 4. Effect of temperature variations onCx. pipiens. Boxplots (2.5%, 25%, 75% and 97.5% quantile and median) of predicted annual synthetic indexes
associated with different temperature inputs (x-axis, from -2.5°C to +2.5°C with respect to actual records). Panel (a) shows the effect on the duration of the
breeding season, defined as the difference between the week of the year when the 95% and the 5% of the cumulative captures are reached; panels (b) and
(c) show respectively the effect on the timing and the value of the peak capture; panel (d) shows the effect on the total annual captures.

doi:10.1371/journal.pone.0154018.g004

Eco-Climatic Drivers ofCulex pipiensDynamics

PLOS ONE | DOI:10.1371/journal.pone.0154018 April 22, 2016 10 / 15



rates of mosquito immature stages. Our results suggest that a reduction of the temperature of
1.5°C decreases both the highest mosquito density during the season and the cumulative num-
ber of captured mosquitoes of about 20%, while in the extreme case of a decrease of 2.5°C a
reduction of 40% of the total abundance and peak values is expected (see Fig 4d). This confirms
that the inability of immature stages to cope with low temperature is a critical factor in shaping
Cx. pipiens habitat suitability.

Hotter seasons might also reduce the maximal abundance of adult mosquitoes (about -25%
for the +2.5°C scenario) but produce only negligible effects on the overall number of captured
adults during the whole season. This apparent contradiction can be explained by the observa-
tion that higher temperatures increase mosquito populations during spring and decrease them
during summer (see S1 Text).

On the other hand, changes in the larval carrying capacity produce proportional effects on
mosquito abundance during the whole breeding season. For instance, our analysis shows that a
30% reduction of the density-dependent factor K causes a decrease of about the same percent-
age on both the highest capture and the cumulative number of captured adult mosquitoes (see
Fig 5c and 5d). Lower values of the larval carrying capacity prevent the development of a large
number of larvae into pupae and, in turn, into adults. Consequently, under favorable condi-
tions, an increase of this parameter increases the population size. However, the length of the
breeding season and the time of the highest capture are not significantly influenced by the mag-
nitude of larval carrying capacity. Indeed, the occurrence of favorable conditions, such as the
increase of the developmental rates of aquatic stages into adults, is mainly driven by tempera-
ture. These results suggest that the carrying capacity, which correlates with the abundance of

Fig 5. Effects of density-dependent factor variations onCx. pipiens. Boxplots (2.5%, 25%, 75% and 97.5% quantile and median) of predicted annual
synthetic indexes associated with different values of K (x-axis, from -50% to +50%with respect to fitted values). Panel (a) shows the effect on the duration of
the breeding season; panels (b) and (c) show respectively the effect on the timing and the value of the peak capture; panel (d) shows the effect on the total
annual captures.

doi:10.1371/journal.pone.0154018.g005
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spring precipitations and is possibly linked to the availability of mosquito breeding sites, affects
the reproduction number, and thus the growth rate, of the population but it does not influence
the developmental and the mortality rates at the beginning and at the end of the season, which
are the main determinants of season length.

Conclusions
In this paper, we investigated which are the main drivers of the observed high heterogeneity
characterizing the Cx. pipiens population among different seasons in Northwestern Italy. We
found that inter-seasonal variability is determined by two main drivers: i) differences in larval
carrying capacities, which in turn might depend on the cumulative number of rainy days from
end of March to mid-June, potentially correlated to the availability of breeding sites, and ii) dif-
ferences in average temperatures, which affect both developmental and survival rates.

Overall, this work provides useful indications about the dynamics of Cx. pipiens during a
typical breeding season. Our results suggest that variations in the number of rainy days and
temperature, like those observed in the study period, may give rise to substantially different
seasonal mosquito abundances and provide interesting insights on how possible climatic
changes could affect the future density of this vector in Piedmont and in similar areas.

The data also exhibit a large degree of spatial heterogeneity, as trap captures vary in abun-
dance and temporal patterns. Investigating these patterns would require detailed information
on habitat utilization and related mosquito movement, which are not available and are beyond
the scope of the present work. Instead, data coming from different traps were aggregated in
order to strengthen the investigation of seasonal heterogeneity, by reducing the influence of cli-
matic condition characterizing single specific days.

In this work, Cx. pipiens population dynamics has been modeled on the basis of the empiri-
cal relations found in laboratory experiments between demographic and developmental rates
of the various life stages (eggs, larvae, pupae, female adults) on temperature and, as far as dia-
pause is concerned, photoperiod. Use of statistical methods on population data have allowed
us to use the model with field data, elucidating the role of density-dependence. Availability
of data on survival and fertility rates in the wild—where for instance Cx. pipiens adults are
expected to seek refuge from heat in summer and from cold in winter—could allow for refine-
ments of the model and for using it beyond a single season.

Supporting Information
S1 Table. Dataset used for model calibration: weekly trapped adult mosquitoes for 12 con-
secutive years (2000–2011).
(XLSX)

S1 Text. Supporting text containing methodological details and additional results.
(PDF)
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